

# **Fragment-based Lead Discovery**

# Two approaches aiming to prevent phosphorylation of SMARCA4 by CDK9 using WAC<sup>™</sup> and in silico screening



Areej Khabut<sup>1</sup>, Carl Diehl<sup>2</sup>, Dorota Focht<sup>2</sup>, Filip Paulsen<sup>1</sup>, Kenth Hallberg<sup>2</sup>, Kirill Popov<sup>1</sup>, Krister Henriksson<sup>1</sup>, Magnus Bergner<sup>1</sup>, Mahtab Azimi<sup>1</sup>, Martin Welin<sup>2</sup>, Mattias Jönsson<sup>1</sup>, Natasha Kamerlin<sup>1</sup>, Ricardo Ferreira<sup>1</sup>, Stella Timpka<sup>1</sup>, Björn Walse<sup>2</sup>, Johan Evenäs<sup>1</sup>

<sup>1</sup>Red Glead Discovery, <sup>2</sup>SARomics Biostructures

# Studying the SMARCA4 bromodomain by WAC<sup>™</sup>

## Introduction to WAC<sup>™</sup>



# **Identifying novel CDK9 inhibitors in silico**



### **Key features**

- Affinity chromatography with immobilized target (~mM)
- MS-detection enables screening at low  $\mu$ M, built-in QC
- Affinity range low μM to mM, direct detection
- High throughput (>5000 cpds/week; cocktails of 25-100)



- Sensitive to charge effects, buffer and co-factors
- > 50 FBLD projects over 7 years
- One tool in the FBLD toolbox











<u>RSF-137</u> <u>RSF-024</u> **RSF-153** WAC  $\Delta RT$ : 3.5 min WAC  $\Delta RT$ : 2.4 min WAC  $\Delta$ RT: 8 min 1.85 Å 1.5 Å Xray: Xray: 36% @ 250 μM TR-FRET: 31% @ 250 μM TR-FRET: TR-FRET:

## SAR studies and hit expansion by parallel chemistry

Xray:



- ~30 indole analogs tested by WAC
- Substitution not tolerated in positions 1, 4, 6- and 7
- Substitution tolerated in positions 2, 3 and 5

Site-selectivity screening by WAC



1.3 Å

nonactive

- ~150 cpds made by efficient parallel chemistry (72 h)  $\rightarrow$  WAC
- Three series explored:
  - Substitution on indole
  - Scaffold hopping  $\rightarrow$  quinoline
  - Ring opening to aniline
- Longest  $\Delta RT$  from aniline series RSF-1353

| ID       | Binding site | WAC ΔRT (min) | %change after PFI-3 saturation |
|----------|--------------|---------------|--------------------------------|
| RSF-137  | 1            | 3.5           | -57%                           |
| RSF-136  | 1            | 2.9           | -63%                           |
| RSF-153  | 1&2          | 2.4           | -16%                           |
| RSF-1648 | 2            | 9.4           | -9%                            |
| RSF-1654 | 2            | 8.9           | -7%                            |

| RG-3293 | 10.7 | 0.36 | 3.0 | 302 |
|---------|------|------|-----|-----|
| RG-3294 | 22.5 | 0.24 | 1.0 | 281 |

# RG-3298 🤇

Weak Affinity Chromatography

## **Initial hit expansion**

- Two fragment-sized hits, RG-3284 and RG-3298, prioritized for hit expansion
- SAR-by-catalogue, **15 cpds purchased**
- A focused library of analogues: **25 cpds synthesized in-house**
- Most ligand-efficient compound in the "6-core series" identified as **RG-3686**
- Using learnings from the "6-core series", **RG-4577** is identified

## **Structure-based design**





www.redglead.com www.saromics.com

NH